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Abstract

The higher-order asymptotic crack-tip fields are considered for a mode-I crack in a power-law creeping material
under the plane strain conditions. Based on the three-term solution of Yang et al. (1993) and Chao et al. (1994) for
hardening materials, this paper develops a three-term solution near a crack tip in creeping materials only with two
parameters: C(7)-integral and a constraint parameter 4,(z). This solution is then discussed for conditions of small-scale
creep, transient creep and extensive creep. In addition, detailed finite element analysis is performed for four specimens,
namely, single-edge notched tension, three point bend, center-cracked panel and compact tension. Good agreement, in
both angular and radial stresses, with finite element results confirms that the three-term asymptotic solution is uni-
versally valid for specimens possessing various crack-tip constraints and from small-scale creep to extensive creep. This
statement is especially true for shallow cracked (or low constraint) specimens, where the dominant region for the HHR-
type singularity does not practically exit. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Accurate description of crack-tip stress and deformation fields is the foundation to establish a reasonable
macroscopic fracture criterion and predict the failure of flawed structures. Recently, the research on the
higher-order asymptotic crack-tip fields for elastic—plastic materials has received extensive attention. Since
the HHR singularity field (Hutchinson, 1968; Rice and Rosengren, 1968) with a single parameter J-integral
is not sufficient to characterize the mechanics fields near a crack tip, two-term or multiple-term asymptotic
crack-tip fields are presented for power-law hardening materials to study the crack-tip constraint effects.
The representatives of which are J-T approach proposed by Betegon and Hancock (1991), J-Q approach
by O’Dowd and Shih (1991) and J-A4, approach by Yang et al. (1993) and Chao et al. (1994). Chao and Zhu
(1998), and Zhu and Chao (1999) have given a detailed review about these approaches and concluded that
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the three-term asymptotic solution only with two parameters J and A4, can describe the crack-tip fields for
different cracked specimens from small-scale yielding to large-scale yielding with sufficient accuracy.

The interest in the current paper is to reveal the asymptotic results that can accurately characterize the
mechanics fields near a crack tip in creeping materials. Structural failure due to creep fracture at high
temperature has drawn much attention over the last two decades. Analytical work was first conducted
independently by Riedel and Rice (1980), Riedel (1981) and Ohji et al. (1979) to develop a theoretical basis
for the crack-tip stress and deformation fields for plane strain mode-I stationary cracks in power-law
creeping materials. Both small-scale creep and extensive creep conditions were considered and the results
show that the singular creep crack-tip field is of HRR type with the path-independent integral C(¢). Ehlers
and Riedel (1981) developed a finite element program to analyze the deformation of a creeping body that
contains a stationary mode-I crack. They examined the validity of the approximation involved in the
analytical short-time solution and investigated the transient behavior of a compact tension (CT) specimen
from small-scale creep to extensive creep. Bassani and McClintock (1981) obtained plane strain numerical
solutions for the power-law creep relaxation of crack-tip stresses subsequent to an initial elastic response. It
is found that the elastic stress intensity factor K; and the path-independent C*-integral are the relevant
loading parameters corresponding to short-time and long-time creep, respectively. Li et al. (1988) per-
formed finite element analysis for a crack embedded in an infinite plate to study the dominance of the
HRR-type field for a stationary mode-I crack in an elastic-power-law creeping solid under the plain strain
conditions. These analyses show that

(a) HRR-type singularity field dominates over a region that is about one-fifth the extent of the creep zone
within the transient time.

(b) The time dependence of the amplitude C(¢) of the near-tip field is in good agreement with the analysis
of Riedel and Rice (1980) and Ohyji et al. (1979).

(c) Finite deformation effects dominate over a size scale of the order of the crack tip opening displace-
ment as in the case for rate independent solids.

(d) It was anticipated that under extensive creep conditions, the size of the zone of C* dominance is
strongly dependent on the relative amount of bending to tension around the ligament. If the ligament
is subject to primarily tension, the zone of C* dominance is substantially smaller.

More recently, Yang et al. (1996) carried out detailed finite element analysis for a single-edge notched
tension (SENT) in a power-law creeping superalloy material, and studied the HRR-type crack-tip stress
and strain fields under both the plane stress and plane strain conditions. Their results indicated that the size
of the stress-based HRR-type dominant zone is only a fraction of the creep zone under the plane stress
conditions, and is very small (especially along the crack extending line) compared to the creep zone size
under the plane strain conditions. Furthermore, the dominance of the singular strain fields is atleast two
orders of magnitude smaller than the corresponding stress dominance zones. As such, the use of experi-
mental measurement of surface displacement and/or strain data for the observation of HRR-type fields may
not be possible, unless modifications to the existing HRR-type theory are made.

To take the crack-tip constraint effect into account, Shih et al. (1993) extended the J-Q approach
(O’Dowd and Shih, 1991) for elastic—plastic materials to creep crack growth, and presented an approximate
two-term solution with the parameters C(f) and Q(f). Sharma et al. (1995) compared C*—Q* two-term
solution under the steady state creep with the finite element results for a shallow SENT specimen having
a/W = 0.05 in elastic power-law creeping materials. As a result, it is found that the two-term solution
provides a more accurate description of the spatial and temporal variations of the crack tip stresses in the
creeping materials, whereas the region of dominance of the HRR-type field is essentially zero.

In the J-Q approach, O’Dowd and Shih (1991) argued that the parameter Q is a distance-independent
hydrostatic stress ahead of the crack tip. However, the numerical results of Sharma et al. (1995) indicate
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that the parameter Q is a hydraulic stress only under the small-scale yielding conditions, and not a hy-
draulic stress, under the large-scale yielding conditions. Nikishkov et al. (1995b) pointed out that the
magnitude of Q is dependent of the distance from the crack tip. On the other hand, Chao and Zhu (1998)
revealed that the parameter 4, is based on rigorous asymptotic solutions and is nearly independent of its
position from the crack tip and is valid from small-scale yielding to large-scale yielding. As such, the J-A4,
approach is a more reasonable choice for the characterization of the crack-tip fields. Based on this argu-
ment, this paper extends the J-A, three-term solution of Yang et al. (1993) and Chao et al. (1994) for
elastic—plastic hardening materials to a three-term near-tip solution for a plane strain mode-I crack in
power-law creeping materials with only two parameters: C(¢)-integral and a constraint parameter A,(¢).

To assess the validity of the three-term asymptotic solution for various specimens from small-scale creep
to extensive creep, detailed finite element analysis is conducted for four typical fracture test specimens:
SENT, three point bend (TPB), center-cracked panel (CCP) and compact tension (CT). Good agreement
with finite element results confirms that the three-term asymptotic solution is universally valid for these
specimens at different creeping stages and is especially good for low constraint specimen, where the HHR-
type singularity field loses the dominant region.

2. Asymptotic crack-tip fields in a creeping material

Our attention in this work is focused on two-dimensional mode-I stationary crack problems under the
plane strain conditions. The material deformation behavior is described by elastic-nonlinear viscous con-
stitutive relation according to the Norton power-law creep relation (Nortan (1929)). Under uniaxial ten-
sion, the total strain rate is related to the stress by

G a\”
f=—+ & — !
¢ n“«%>’ (1)

where E is Young’s modulus, gy is a reference stress, &, is a reference creep strain rate and » is the creep
exponent. (Note that a combined constant B = &/¢; is often used).

Under multi-axial stress states, based on the J, deformation theory of plasticity, the extension of the
uniaxial creep relation (1) can be written as

14y, 1-2v, 3 (o \"s,
b= Sy (%) @

where v is the Poisson ratio, and J;; is the Kronecker delta. A dot over a quantity denotes a time differ-
entiation. ¢; are the components of the strain rate tensor, g;; are the components of the stress tensor, S;; are
the components of the deviatoric stress tensor and S;; = o;; — 0k9;;/3. 0. is the Mises effective stress defined
by . = ((3 /2)S,~,-S,-j)1/ 2, Typically, the material constants E, v, n, oy, & or B are obtained experimentally
from uniaxial tests at the temperature of interest.

2.1. HRR-type leading-term singularity field

It is noted that in the constitutive relations (1) and (2) for elastic-nonlinear-viscous materials, the total
strain rate is comprised of elastic strain and creep strain rate. If there is a singularity crack-tip field and the
instantaneous response of the material is elastic under sudden applied loading, then at time ¢ = 0, the
elastic singularity fields prevail at the crack tip. Later, after the load application (t > 0) and at distances
sufficiently close to the crack tip, the creep strain rate is much larger than the elastic-strain rate and controls
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the crack-tip fields (n > 1). Accordingly, the material constitutive behaviors Egs. (1) and (2) become ap-
proximate power-law creep relationships.

Hoft (1954) reckoned that if the displacements and strains in elastic—plastic materials are respectively
replaced by displacement- and strain-rates in creeping materials in all basic field equations, then the so-
lution constructions are similar for two kinds of materials. Using the Hoff analogy to contrast the power-
law creep relation with the power-law hardening relation, Riedel and Rice (1980) and Ohji et al. (1979)
presented the HRR-type singularity field (Hutchinson, 1968; Rice and Rosengren, 1968) for power-law
creep materials as follows:

Clt 1/(n+1)~
gjj = 0'0( ( ) ) O'ij(g)»
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) . C(t) n/(n+l)~
b = & (0 3
glj F0<é000[n}"> Pl_/( )7 ( )
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i = ¢ . i 0 )
u 80r<80001,,r> u;(0)

where r and 0 are polar coordinates centered at the crack tip. The dimensionless constant 7, and the 0-
variation functions of the suitably normalized functions 6;;, &; and #; depend only on the creep exponent n.
These functions have been tabulated in Shih (1983) or Chao and Zhang (1997). The amplitude factor C(¢),
which depends upon the applied time, magnitude of the remote loading, crack configuration and material
properties, is defined as (Bassani and McClintock (1981))

n . .
C(t) = /r<m0ij8ij”1 - Oij"juﬂl)dsv @

where I" is a vanishingly small, clockwise contour surrounding the crack tip, #; is the unit outward normal
to I', ds is the arc length along I" and i;; is the displacement gradient rate. It is clear that C(¢)-integral
characterizes the intensity of the near-tip fields in elastic-nonlinear-viscous materials in precisely the same
manner as the J-integral does the near-tip fields in rate-independent elastic—plastic materials. Moreover, the
C(?)-integral is path-independent under steady-state creep conditions.

2.2. C(t)-A;y(t) three-term asymptotic solution

As pointed out previously that the HRR-type one-term singularity field (3) generally dominates in a very
small region or does not exist near a crack tip for a real specimen. Hence, higher-order asymptotic crack-tip
fields are useful for characterizing the mechanics fields near a crack tip in creeping materials. Following the
procedure for obtaining the three-term asymptotic solutions for elastic—plastic materials, e.g. Yang et al.
(1993), Chao et al. (1994) and Nikishkov (1995a), a three-term asymptotic solution for creeping materials is
reported here.

It is assumed that the stress components near a crack tip (r — 0) are separable and can be expressed as a
series as

O'l:]'(r, 6, t)

0o

=4 (0|6 (0) + 427265 (0) + A3 ()76 (0) + -+ |, (5)

where the index 1, 2, 3 correspond to the first-order, second-order and third-order fields, respectively. A;,
A,, Az are undetermined time-dependent constants, sy, s», s3 are the exponent of stress functions and
51 <sy<s3<---, F=r/L, L is a characteristic length. In the polar coordinate system, the equilibrium
equations have the following form:
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where comma denotes a partial derivative with respect to the variable after the comma. Substitution of Eq.
(5) into Eq. (6) yields the relationships among the angular stress functions
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Based on the definition of the Mises effective stress o, and the stress asymptotic expansion (5), one has
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Substituting the stress expansion (5) and the effective stress expansion (8) into the constitutive Eq. (2), one
obtains the asymptotic expansion of strain rate components
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The geometric relations between strain rate and displacement rate components in the polar coordinate
system can be written as
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érr = ur,r;

. 1 . .

&0 = (it + 119 ), (12)
érﬁ = Z (ar,ﬁ + Vilﬁﬁr - uﬁ)

From Egs. (10) and (12), one can obtain the asymptotic expansions of displacement rate components
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Egs. (7) and (11) and (14) are the final governing equations for the first-order, second-order and third-
order asymptotic fields. They are exactly the same as those given by Nikishkov (1995) for power-law hard-
ening materials. If the Airy stress function was used, one would obtain the governing equations exactly as
those reported by Yang et al. (1993). Accordingly, the solution properties and the angular functions of
stress, strain and displacement rate are the same as those for power-law hardening materials. Several
conclusions can thus be summarized as follows:

(a) The first-order asymptotic field is the HRR-type singularity field, and thus

Al(t)—< € >WH>, P (15)

0'080]nL n—+ 1

(b) The amplitudes of the second-order and third-order fields are not independent of each other and have
a simple relationship

A3 = A3 (16)
(¢) For the creep exponent n > 3, the stress exponents are related by

§3 = 28 — §1. (17)
(d) From moderate to low creeping materials, i.e. n > 3, three-term solution with C(7)-A4,(¢) as the two

parameters is the pure power-law creep solution. The elastic strain rate has no role on the crack-tip fields.

Therefore, from Egs. (5), (10), (13), and (15)-(17), C(f)-A,(t) three-term solutions of stress, strain and
displacement rate for power-law creeping materials can be written as



Y.J. Chao et al. | International Journal of Solids and Structures 38 (2001) 3853-3875 3859

GEGD _ 4, [60 (0) + (050 (0) + B0 (0)]
09

B0 o(0) [ (0) + a(F D5 (0) 4 A5 0)], (18)
>0

i;(r, 0; 1) n s+~ <1> (n=1) 4521 7(2) 2( )1 (= Dts3+150)

T = A0 [P 0) + s ) A o),

where A;(¢) is defined by Eq. (15), 4,(¢) is an undetermined parameter and may be related to the loading
condition, creep time and specimen geometry, 7 = /L and L is a crack characteristic length which can be
taken as crack depth, specimen width, unit 1 cm and so on. The stress exponents sy, §;, 3, the integral
constant /,, and the dimensionless angular functions o-fj ), gl(j’"), El*j( (m=1,2,3; E;}G) = éf? + f,(.jl)) are tab-
ulated by Chao and Zhang (1997). It can be easily observed that when A, = 0, the three-term solution (18)
reduces to the leading-term HRR singularity field (3).

It is noted that the parameter A,(¢) cannot be determined in the asymptotic analysis. It can be deter-
mined by matching the three-term stress solutions in Eq. (18) with known crack-tip fields, such as finite
element results. A few methods have been proposed for this purpose, e.g. the point-matching technique of
Chao et al. (1994), the least square approach of Nikishkov et al. (1995b) and the weight function approach of
Chao and Zhu (2000). In this paper, the specimen width W is used as the characteristic length L, the stress
components g, and ggp at #/a = 0.01-0.1, 0 = 0° and 45° are used to determine an average value of 4,(¢) by
matching the three-term solution in the first part of Eq. (18) with finite element results.

If we use the creep material constant B = &y/a, the C(¢)-A,(¢) three-term solution (18) can be written as
0y (r,031) = A1(0)|P161) (0) + 4> (07657 (0) + 430761 (0) .
iy (r,0:1) = BAY0) [713) (0) + A0V 80 (0) + 307 5 (0), (19)

il,-(l",@;l) BLA”( ){—mﬁl (1) (0) +A2( )},sl n=D+n+ly @ (6) +A3( ),ﬂl(”’l)+53+lﬁ§3)(0)i|,

where
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a0=(57) - (20

Note that, if we make an assumption a priori that the deformation near a crack tip is controlled by the
creep and the elastic strains can be neglected, the material considered becomes a pure power-law creeping
material. Using the Hoff analogy (Hoff, 1954), the C(¢)-A,(¢) three-term solution (18) can also be obtained
directly from the J-A, three-term solution by Yang et al. (1993) and Chao et al. (1994) for power-law
hardening materials when J is replaced by C(¢) and ag, is replaced by é&.

2.3. Expressions of C(t) under different creep conditions

The amplitude C(¢)-integral in the three-term solution (18) is defined in Eq. (4) and depends generally on
the creep time, magnitude of the applied loading, crack geometry and material properties. It is clear that
C(r)-integral characterizes the intensity of the crack-tip asymptotic fields (18) in elastic-nonlinear-viscous
materials. Thus, an accurate, yet simple, method for determining C() is important. Due to the complexities
involved in evaluating C(¢) from Eq. (4), approximate solutions of C(f) have been developed at different
creeping stages.
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2.3.1. Small-scale creep

A small-scale creep is the short-time creep. At short times, after load application, the elastic strains are
much greater than the creep strains everywhere except in a small region at the crack tip, which is referred to
as ‘creep zone’. Riedel and Rice (1980) and Ohji et al. (1979) showed that the small-scale creep fields are self-
similar and that there is creep zone, where the spatial dependence of the stress and creep strain are precisely
given by the asymptotic fields. In the outer region of the creep zone, the linear elastic crack-tip field still
dominates. As a result, they obtained the simple expression

_K(A-v)/E
 (n+ 1)
where Kj is the stress intensity factor of a mode-I crack. Eq. (18) or Eq. (19) in conjunction with Eq. (21) is

the three-term asymptotic fields under the small-scale creep conditions, which is valid as long as the creep
zone is sufficiently small compared with the dimensions of the specimen.

c() ; (1)

2.3.2. Extensive creep

At later times after the load is applied, the whole specimen creeps extensively and the elastic strain can be
neglected compared to creep strain. The deformation of material enters the stage of steady-state creep and
the stresses become time-independent (¢ — 0) as ¢ — oo, if the load is kept constant and finite geometry
changes can be neglected. As a consequence, all field quantities become time-independent. In this case,
C(t) — C*, A5(t) — A} as t — oo, where C* is a path-independent integral. Hence, the three-term asymp-
totic fields (19) under the steady-state creep can be written as

C* (1/n+1) B ~ ~
o;(r, 0) = (BI L) 71650 (0) + 43725(0) + 4275 (0)
cr A\ s e ok
éij(r; 0) =B (B[ L> [fmlgl(jl)(g) + AEF(’FI)MJMZEE]Z)(H) + A§2’7(n71)51+53§ij(3)(0)} , (22)

C* (n/n+1) )
i{[(l’, 0) — BL (BI I ) |:7ns1+11251)(0) 4 A;?Yl(n71)+32+1ﬁ52) (0) + A;Z (t)rvl(n71)+Av3+lﬁ§3) (0):| )

The extensive creep case is completely analogous to the fully plastic state in rate-independence materials.
Through the Hoff analogy, the C*-integral can be obtained from the fully plastic J-integral, if the strains &;
are replaced by the strain rates ¢, or the material constant ag, /o, is replaced by the creep constant B. Thus,
a typical extensive creep solution of C* can be expressed by Li et al. (1988)

. a PO'() n+1

C :B(W—a)h(—,n) — , (23)
w P

where W is the specimen width, a is the crack depth, /4 is a dimensionless function of creep exponent n and

geometric parameter ¢/ W, and is tabulated in the elastic—plastic handbook (Kumar et al. (1981)). P is the

applied load, and P, is an appropriate reference load, e.g. the limit load for an equivalent fully plastic body

with a yield stress ay.

2.3.3. Transition from small-scale creep to extensive creep
The characteristic time ¢r for transition from small-scale creep to extensive creep was estimated by
Riedel and Rice (1980) and Ohji et al. (1979) and is given as

_K1-¥)

tr = o DEC (24)
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It is clear that the transition time #r depends on the applied load, crack configuration and the elastic and
creep properties of materials. For times shorter than ¢t, the amplitude C(¢) of the crack-tip fields is given by
the small-scale result in Eq. (21), whereas for times longer than ¢1, the amplitude C(¢) is given by the steady
state value C* in Eq. (23). In the interval between small-scale creep and extensive-creep, Ehlers and Riede
(1981) suggested the following interpolation formula for C():

C(t)y=C(tr/t+1). (25)

Eq. (18) or Eq. (19) in conjunction with Eq. (25) is the three-term asymptotic fields under the transient creep
condition.

3. Numerical results and comparisons

In order to assess the validity of the three-term asymptotic solution (18) or (19) under different creep
conditions, detailed finite element analyses were conducted for four typical fracture test specimens as shown
in Fig. 1. These specimens are SENT, TPB, CCP and CT. Then the asymptotic solutions are compared with
the numerical results. The extent of dominance of the three-term solution under different creep conditions is
obtained for the four specimens.

Fracture Test Specimens

(a) P_ (c) A44ans
] o

7H 2H —

L< W > L< 2W

Pi RERE

(b) (d) P

"1 I ! —
Tal\ W 2H
—2H g V™

Fig. 1. Specimen geometries: (a) SENT; (b) TPB; (c) CCP; and (d) CT.
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3.1. Finite element model

The commercial finite element code, ABAQUS (version 5.7-1), was used to model the stationary cracked
specimens under the mode-1 plane strain conditions in this work. The numerical model employs the con-
ventional small-strain theory and the material deformation obeys the constitutive relation (2). The material
used in this calculation is a superalloy, Inconel 800 H, at 1200°F. The material properties are E =
22.294 Mpsi, 6y = 60487 psi, v=10.33, n =5, B=2.1 x 1077 (psi)~>/h.

Due to the symmetry of specimens, a half of SENT, TPB and CT specimens and a quarter of CCP
specimen were modeled. A typical finite element mesh is shown in Fig. 2. The eight-node isoparametric
element with reduced integration (element type CPESR) was used in all the calculations. The mesh consists
of 588 eight-node elements and 1873 nodes with 28 rings of elements and 36 elements in each ring for short
time creep (¢ < t1, ¢t is the transition time), and 318 elements and 1033 nodes with 14 rings of element and
18 elements in each ring for long time creep (¢ = ¢1). The two cases with different number of elements have
approximately the same computation accuracy.

In all calculations, the load is applied instantaneously to the specimens, and then holds constant until
steady-state creep conditions are reached. Initial application of the load is assumed to occur so quickly that
it involves purely elastic response. C(¢)-integral and the crack-tip field quantities were computed directly by
the ABAQUS.

3.2. Single edge notched tension specimen with a/W = 0.125

A SENT specimen with a shallow crack as illustrated in Fig. 1(a) is considered in this section. The
specimen has a crack depth of a/W = 0.125, width W = 40 inch, length 2H = 5W, and a thickness b = 40
in. The remote uniform load is 30,000 psi, which corresponds to an applied concentrated load of P = 48
Mlb.

3.2.1. Time-dependence (creep zone, C(t), A(t))

Fig. 3 shows the development of the creep zone at the crack tip for the SENT specimen at different time.
The creep zone boundary is defined as the region, where the effective creep strain &° is equal to the effective
elastic strain &, that is & = &°. The size and shape of the creep zone show that the maximum distance of

(@) (b)

L

Fig. 2. Finite element mesh for specimen analyzed which comprises of eight-node plane strain isoparametric elements (a) Entire
specimen mesh and (b) Crack-tip mesh.
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] ——t=2.0t
——t=50t;
-2.0 0.0 2.0 4.0 6.0 8.0
X (inch)
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creep zone boundary from the crack tip occurs at about 55° < 0 < 65° measured from the crack line. The
creep zone agrees well in shape as compared with the result obtained by Ehlers and Riedel (1981) for
the CT-specimen, Li et al. (1988) for the semi-infinite plate with an edge crack. The maximum extent of the
creep zone size at time ¢t = 0.1¢1, t = 1.0¢, t = 2.0¢r and ¢t = 5.0¢1 are 0.076a, 0.336a, 0.68a and 2.6a, re-
spectively, where a is the crack depth. For the whole specimen, the creep strain dominates inside the creep
zone, while the elastic strain prevails outside the creep zone.

Fig. 4 shows that the variation of C(¢)-integral with time for the shallow cracked SENT specimen. The
results in this figure are obtained from the finite element analysis (FEA), Riedel and Rice’s short time
estimation formula (21) and Ehlers and Riedel’s approximate interpolation formula (25) for transient time
between small-scale creep and extensive creep. For SENT specimens, the steady-state value C*, e.g. Eq.
(23), becomes

C* =B(w—a)(a/w)h(a/w, n)(Pao/Po)"H, (26)
where the reference load per unit thickness is

Py = 1.455n(w — a)ay (27)
in which

= () - G5 &

For the SENT specimen with a/W = 1/8, hy = 11.5 (Kumar et al. (1981)), thus the C*-integral for this case
is 42.52 psi-in/h from Egs. (26) and (27). And so the transition time #r = 225 h, which is calculated from Eq.
(24). At this transition time, i.e. t = ¢, the C(¢)-integral from the FEA is determined as 90.84 psi-in/h.

It is found that for very short time (¢ < 0.06z1), the C(¢)-integral obtained from Egs. (21) and (25) does
not agree with the results from FEA. Their errors compared with FEA are greater than 10%. For short time
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Fig. 4. Variation of C(¢)-integral with time for SENT specimen with a/W = 0.125.

(0.06 < #1 < 0.3¢7), the estimation of the C(7)-integral from Eq. (21) agrees very well with FEA results, while
for long time (¢ > 0.3¢7), the C(¢)-integral from interpolation formula (25) is in agreement with the FEA
results. At the time about ¢ = 5¢r, the C(¢)-integral approaches the steady-state value C* = 42.52 psi-in/h.

Fig. 5(a) is the temporal variation of the amplitude 4,(7) in the three-term asymptotic solution (18) at
different location near the crack tip of the shallow cracked SENT (r/a = 0.018,0.04,0.1). It is observed that
the creep time has certain influence on A4,(¢) only in short time ¢ < ¢r. One can conclude that the amplitude
A,(?) in the three-term asymptotic solution for power-law creeping materials is approximately independent
of the creep time. On the other hand, the creep time has significant effect on the load parameter C(¢)-integral
as shown in Fig. 4. In fact, most recently Chao and Zhu (2000) has theoretically proved that the value of the
constraint parameter A, in the J-4, three-term solution is independent of the applied loads for power-law
hardening materials or under the large-scale yielding conditions. In terms of the Hoff analogy (Hoff, 1954),
A,(?) in the C(t)-A,(¢) three-term solution can also be interpreted as a constraint parameter and is inde-
pendent of the applied loads, including the generalized load-time, for power-law creeping materials or
extensive creep. So hereafter, we shall denote 4,(¢) in the three-term solution (18) or (19) as A,.

Fig. 5(b) depicts the variations of amplitude 4, with the distance from the crack tip at the time ¢ = ¢r for
the shallow cracked SENT specimen. The value of A4, is approximately a constant in the region r/a > 0.03.

3.2.2. Radial and angular distributions of stress field

In order to demonstrate the validity of the three-term asymptotic solution (19), in this section we report
and compare the finite element results, HRR-type fields and the three-term asymptotic solutions. In all
figures of this paper, FEA represents the finite element numerical results, HRR denotes the HRR-type
singularity field and TTS indicates the C—4, three-term solution. To judge the degree of agreement between
the FEA results and the asymptotic solutions (HRR-type field or the C-A4, three-term solution), we adopt
the criterion that “good agreement” is defined as when the difference between the FEA results and the
asymptotic solutions is within 10 percent of the asymptotic solutions. Fig. 6 shows the radial distributions
of stresses for SENT specimens with a/W = 0.125 at time ¢ = 0.1¢r, position 0 = 0° and 0 = 45°. Fig. 7
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Fig. 5. Variations of amplitude A2 for SENT specimen of a/W = 0.125 with (a) time and (b) the distance from crack tip.
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Fig. 6. Radial distributions of stresses at r = 0.1¢p for SENT specimen with a/W = 0.125 (a) 6 = 0° and (b) 6 = 45°.

shows the angular distributions of the stresses for SENT specimens with a/W = 0.125 at time ¢ = 0.1¢r,
position »/a =0.01 and r/a =0.1. Tt is observed that in Fig. 7 the three-term solutions of all stress
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components a,., ogg and 7,4 match very well with the finite element results, whereas the HRR-type fields are
close to the FEA results at r/a = 0.01 and deviate significantly from the FEA results at r/a = 0.1. In the
radial direction, the three-term solutions are in good agreement with the FEA results from crack tip to even
beyond r/a > 0.2, at both 0 = 0° and 0 = 45°, while the dominant region of the HRR-type fields is only
within »/a <0.01. Note that in Fig. 6, o,, = o9y from the HRR-type field, however, actually o,. # ggy al-
though the difference is small as can be seen from both the FEA results and the three-term solution.

For the SENT specimens with a/W = 0.125, at time ¢ = 1.0¢t, the radial distributions of the stresses in
the direction of 8 = 0° and 0 = 45° are plotted in Fig. 8; the angular distributions of the stresses at the
position from the crack tip /a = 0.018 and »/a = 0.1 are depicted in Fig. 9. At time 7 = 7.8¢r, the radial
distributions of the stresses in the direction of 6 = 0° and 0 = 45° are illustrated in Fig. 10; and the angular
distributions of the stresses at the position r/a = 0.018 and »/a = 0.1 are shown in Fig. 11. Again, all
calculated stress components in both angular and radial directions are in good agreement with those from
the three-term solutions, but deviated substantially from those of HRR-type fields. In the radial directions
of 6 =0° and 0 = 45°, the three-term solutions match well with the FEA results up to »/a = 0.2 when
t = 1.0¢r and r/a = 0.1 when ¢ = 7.8¢r. In the circumferential positions of »/a = 0.018 and »/a = 0.1, all
stresses from the three-term solutions are consistent with the calculated stresses over the entire angular
sectors except for the sector near to the crack surface of 0 = 180°. This is reasonable because the region
near the crack surface is in elastic states from FEA, for instance, the zones of 0 <30° and 0 > 110° is
outside the creep zone at 1 = #r and r/a = 0.1, while the three-term solution is pure creep solution and as
such cannot match well with the elastic results. In spite of this, the three-term solutions qualitatively co-
incide with the FEA results, but the HRR-type results cannot. Near the crack surface of 0 = 180°, the
radial stress o,, is less than zero from both FEA and TTS, but is more than zero based on the HRR-type
field. As a result, the HRR-type field incorrectly characterizes the actual compressible stress state by a
tensile stress.
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In summary, for the shallow cracked SENT specimens from small-scale creep (i.e. time ¢ = 0.1¢#1) to
extensive creep (i.e. time ¢ = 7.8¢7), the three-term solution compares well with the finite element results
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both in the angular and the radial directions at least within »/a <0.1. On the other hand, the HRR-type
fields are far from the FEA results and the dominant zone of the HRR-type field is nearly non-existent. It is
noted that 4, = —0.488 was used in the presentation of the stresses shown in Figs. 6-11.
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3.2.3. Time variation of stress field

Fig. 12 shows the temporal variations of stresses at a radial distance r/a = 0.018 in two different angular
directions 0 = 0° and 6 = 45°. It is found again that the three-term solutions match very well with FEA
results near the crack tip for all the times considered here from ¢ = 0.1¢7 to ¢ = 7.8¢r. And, the HRR-type
fields deviate from the FEA results for all the time except for the shear stress g,5. Moreover, the change of
stress gradients with respect to the time is large when time ¢< 0.8¢1, and then is very small. At about
t = 4.0¢t, the stress fields determined from the three-term solution and from the FEA calculations approach
the steady-state stress field corresponding to the three-term solution (22) as shown in Fig. 12.

3.3. Single edge notched tension specimen with a/W = 0.5

A SENT specimen with a deep crack as illustrated in Fig. 1(a) is considered here. The specimen has a
crack depth of a/W = 0.5, width W = 1 inch, length 2H = 8, and thickness b = 1 in. The remote uniform
load is 4886 psi, which corresponds to an applied concentrated load of P = 4886 1b.

The results and analyses of Section 3.2.3 indicates clearly that the three-term solution (19) is universally
valid for all times from the small-scale creep to the extensive creep. Moreover, the dominant zone of the
three-term solution is nearly unaffected by the creep time when ¢ > ¢r. Therefore, hereafter, we only report
and discuss results of stress fields at the transient time ¢ = ¢ and focus our attention on the size of the
dominant zone of the three-term solution.

For the SENT with a/W = 0.5, h is equal to 0.928 from Kumar et al. (1981). From Egs. (24) and (26),
tr = 225.45 h, C* = 0.008853 psi-in/h. From FEA calculations, C(¢) = 0.0208 psi-in/h at 1 =t1, 4, is de-
termined as —0.556. Fig. 13(a) and (b) show the radial and angular variations of stress components a,,, ggg
and 6,9 at # = 0° and at r/a = 0.09 for the SENT specimen with a deep crack of a/W = 0.5. The radial
distributions of stresses from the three-term solution at 8 = 0° agree very well with the FEA results within
r/a<0.2 as shown in Fig. 13(a). All stress components from the three-term solution almost reproduce the
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Fig. 12. Time variations of stresses for SENT specimen with a/W = 0.125 (a) 6 = 0°, r/a = 0.018 and (b) 6 = 45°, r/a = 0.018.
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FEA results over the entire angular sectors at /a = 0.09, as shown in Fig. 13(b). However, the HRR-type
fields are far from the FEA results both in the radial and the angular directions. Relative to the shallow
cracked SENT specimen, the three-term solutions for the deep cracked SENT match better with finite
element results when compared at the same position from the crack tip.

3.4. Three-point bend, center-cracked panel, and compact tension specimens

This section reports results from the three-point bend (TPB), the center-cracked panel (CCP) and the
compact tension (CT) specimens as shown in Fig. 1(b)-(d). TPB specimen has a crack depth of
a/W = 0.125, span of 2H = 4W. CCP specimen has a crack depth of a/W = 0.125, length of 2H = 4W. CT
specimen has a crack depth of a/W = 0.25, height of 2H = 1.2W. The specimen width W (or half width for
CCP) is 4 in. specimen thickness » = 1 in. for all three specimens. The applied load for TPB is 10 Klb, the
tension load for CT is 12 Klb, and the remote uniform load for CCP is 18,750 psi which corresponds to a
concentrated load of P = 37.5 Klb.

From the handbook (Kumar et al. (1981)), the C*-integral expression (23) for the three specimens have
the following forms:

(a) TPB specimens

. PO'() n+1

C*'=BW —a)h | — , (29)
T4

where 7 = 0.687 when a/W = 0.125, the reference load per unit thickness is

_1A455(W — a)’ay

P
0 2H
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(b) CCP specimens

P n+l
C*:B(W—a)%h1<P—aoo) , (31)

where /; = 4.35 when a/W = 0.125, the reference load per unit thickness is
4
P zﬁ(W—a)ao. (32)

(c) CT specimens

C* = B(W — a)h(Pay/Py)"", (33)
where /; = 1.48 when a/W = 0.25, the reference load per unit thickness is

Py = 1.4550(W — a)ay (34)
in which

2a : 4a 2a
= 2—(——+1]. 35
1 \/(W—a) +W—a+ (W—aJr > (35)

From Egs. (21), (29), (31) and (33), the transition time and C*-integral can be obtained for the three
specimens:

e For the TPB specimen, the transition time ¢t = 55.1 h, C* =0.08455 psi-in/h. At time ¢ = ¢tt,
C(t) = 0.1385 psi-in/h from FEA. And the parameter 4, = —1.07.

e For the CCP specimen, the transition time ¢ = 367.37 h, C* = 0.001275 psi-in/h. At time ¢ = tr,
C(t) = 0.00236 psi-in/h from FEA. And the parameter 4, = —1.19.

e For the CT specimen, the transition time #r = 40.78 h, C* = 0.285 psi-in/h. At time ¢ = #r, C(z) = 0.352
psi-in/h from FEA. And the parameter 4, = —0.2615.

Fig. 14(a) and 14(b) show the radial and angular distributions of stress components o,., 649 and a,¢ at
0 = 0° and at r/a = 0.05 for the TPB specimen with a/W = 0.125. The radial distributions of the three-term
solution at 0 = 0° as shown in Fig. 14(a) agree well the FEA results only within »/a < 0.0825, and then
deviate from the FEA results in a nearly linear variation. It indicates that the global bending stress impinges
to the crack-tip stress field (c.f. Chao and Zhu, 1998; Zhu and Chao, 2000). The angular distribution of the
three-term solution match very well with the FEA results over the entire angular sectors except for the
region near the crack surface, as shown in Fig. 14(b). However, the HRR-type fields are far from the FEA
results both in the radial and the angular directions.

Fig. 15 (a) and (b) show the radial and angular variations of stress components a,,., g9 and o,9 at 0 = 0°
and at r/a = 0.01 for the CCP specimen with a/W = 0.125. The radial distributions of stresses at 0 = 0°
from the three-term solution agree very well with the FEA results within r/a <0.12. The angular distri-
butions of the three-term solution are in good agreement with the FEA results over the entire angular
sectors except for the region near the crack surface. Again, the HRR-type fields deviate substantially from
the FEA results both in the radial and the angular directions.

Fig. 16(a) and (b) show the radial and angular variations of stress components c,,, 649 and a,9 at 0 = 0°
and at r/a = 0.1 for the CT specimen with a/W = 0.25. It is observed that the HHR-type field, the three-
term solution and FEA results are very close to each other both in the radial and angular directions in this
case. In the radial direction, the calculated stresses at f = 0° are in good agreement with the HRR -type field
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Fig. 14. Distributions of stresses at 7 = zr for TPB specimen with a/W = 0.125 (a) Radial distribution at § = 0° and (b) Angular
distribution at r/a = 0.05.
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within r/a < 0.1, and with the three-term solution up to r/a = 0.25. Even at r/a = 0.1, the three-term
solutions and the HRR-type fields are close to the FEA results as shown in Fig. 16(b) although the three-
term solutions are slightly closer to the FEA results. Accordingly, it can be stated that for CT-specimen, the
HRR type solution provides good characterization for the crack-tip fields and the three-term solution
should replace the HRR-type field only at a distance further away from the crack tip.

4. Conclusions

The higher-order asymptotic crack-tip fields are investigated in the present paper for a mode-I crack in a
creeping material under the plane strain conditions. Based on the three-term solution of Yang et al. (1993)
and Chao et al. (1994) for hardening materials, this paper extends and develops a three-term solution near a
crack tip in creeping materials with only two parameters: C(¢)-integral and additional parameter A,(¢). The
asymptotic analysis reveals that all basic governing field equations for the elastic power-law creeping
materials are the same as those given by Yang et al. (1993) or Nikishkov (1995a) for the elastic power-law
hardening materials. Accordingly, the structure and property of the solutions are completely similar for the
two types of materials. In addition, the following conclusions can be made:

(a) Except the amplitudes of the three-term asymptotic solution, i.e. C(¢) and A,(¢), all stress exponents
and the dimensionless angular functions of stresses, strain rates and displacement rates are same as those
for power-law hardening materials and can be found in the report of Chao and Zhang (1997).

(b) The three-term solutions have only two independent parameters: C(¢)-integral and additional pa-
rameter 4,. This additional parameter A, can be interpreted as a constraint parameter and is independent
of the position from the crack tip. The first term solution is the HRR-type singularity field.
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(c) For moderate to low creeping materials, i.e. the creep exponent n > 3, the C(7)-4, three-term solution
is the pure creeping solution and the elastic strains do not play a role on the crack-tip fields.

(d) For the pure power-law materials or under extensive creep condition, the constraint parameter 4, is
independent of applied loading C(¢) and thus the creep time z.

To assess the validity of the three-term asymptotic solution, detailed FEA is performed for four typical
specimens: SENT with a shallow crack of a/W = 0.125 and a deep crack of a/W = 0.5, TPB with a crack of
a/W = 0.125, CCP with a crack of a/W = 0.125 and CT with a crack of a/W = 0.25. The extensive
comparison indicates that the HRR-type field can only be used in the crack-tip fields with high constraints,
such as the SENT specimens under small-scale creep and the CT specimens, and deviates substantially from
the finite element results for all low constraint specimens. However, the C(f)-A, three-term solution
compare well with the finite element results in both angular and radial distributions and dominate a crack-
tip region of r/a < 0.1 at least for all specimens considered here. Therefore, it can be concluded that the
three-term asymptotic solution developed in this work is a valid solution to characterize the crack-tip
mechanics fields for specimens ranging from high constraints to low constraints and from small-scale creep
to extensive creep. This conclusion is especially true for low constraint specimens, where the HRR-type field
loses the dominant region.
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